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Abstract. We consider the initial value problem (IVP) associated to the modified

Zakharov-Kuznetsov (mZK) equation

ut + 6u2ux + uxxx + uxyy = 0, (x, y) ∈ R2, t ∈ R,

which is known to have global solution for given data in u(x, y, 0) = u0(x, y) ∈ H1(R2)

satisfying ‖u0‖L2 <
√

3‖φ‖L2 , where φ is a solitary wave solution. In this work, the

issue of the asymptotic behavior of the solutions of the modified Zakharov-Kuznetsov

equation with negative energy is addressed. The principal tool to obtain the main result

is the use of appropriate scaling argument from Angulo et al [4, 5].

1. Introduction

In this work we are interested in the initial value problem (IVP) associated to the

modified Zakharov-Kuznetsov (mZK) equationut + 6u2ux + uxxx + uxyy = 0, (x, y) ∈ R2, t ∈ R

u(x, y, 0) = u0(x, y),
(1.1)

where u = u(x, y, t) is a real valued function.

The well studied model that describes the weakly nonlinear waves in shallow water is

the Korteweg-de Vries (KdV) equation

ut + uxxx + uux = 0, x, t ∈ R. (1.2)

This model also arises in several other physical contexts for example: plasma physics,

stratified internal waves and ion-acoustic waves are few to mention (see [9], [8], [37] and
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references therein). Despite its apparent universality, the KdV equation is limited as a

spatially one-dimensional model. There are several two dimensional generalizations of the

KdV equation. The widely studied bi-dimensional generalizations of the KdV equation

are the Kadomtsev-Petviashvili (KP) and the Zakharov-Kuznetsov (ZK) equations. The

KP equation

(ut + uxxx + uux)x + εuyy = 0, (x, y) ∈ R2, t ∈ R, (1.3)

derived by Kadomtsev and Petviashvili [17], describes the propagation of weakly nonlinear

long waves on the surface of fluid, when the wave motion is essentially one-directional with

weak transverse effects along y-axis. Equation (1.3) is known as KP-I for ε = −1 and

KP-II for ε = 1. On the other hand, the ZK equation

ut + uxxx + uxyy + uux = 0, (x, y) ∈ R2, t ∈ R, (1.4)

derived by Zakharov-Kuznetsov in [43], governs the behavior of weakly nonlinear ion-

acoustic waves in a plasma comprising cold ions and hot isothermal electrons in the

presence of a uniform magnetic field (see [27, 28]). This equation, which is a more isotropic

two-dimensional, was first derived for describing weakly nonlinear ion-acoustic waves in a

strongly magnetized lossless plasma in two dimensions. Unlike the KP equation, the ZK

equation is not integrable by the inverse scattering transform method. It was also proved

in Melkonian and Maslowe [25] that the equation (1.4) to be the amplitude equation for

two dimensional long waves on the free surface of a thin film flowing down a vertical plane

with moderate values of the surface fluid tension and large viscosity.

The KP equation can be derived for water waves in the weakly nonlinear, weakly

dispersive and weakly two dimensional limit. Although the KP equation arises in the

description of physically interesting phenomena such as surface, internal, and plasma

waves and has the advantage of being completely integrable using the inverse scattering

transform [1], it is limited by the assumption of weak two-dimensionality.

On the other hand, the propagation of Alfvén waves at a critical angle to the undis-

turbed magnetic filed is described by the modified Korteweg-de Vries (mKdV) equation

ut + uxxx + u2ux = 0, x, t ∈ R. (1.5)

For detailed description we refer to Kakutani and Ono [18]. The two dimensional gener-

alization of this equation that describes the presence of the transverse dispersion is the
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mZK equation (1.1), see Blaha and Laedke [11]. In the physical context, this phenomenon

has been attributed to the finite Larmor radius effects, Hasegawa and Uberoi [16].

Our interest here is to address the asymptotic behavior of the blowing up solutions of

the mZK equation (1.1) which is the critical case of the n-dimensional generalization of

the generalized KdV equation

ut + upux1 + ∂x1(∇2u) = 0, x = (x1, x2, · · · , xn) ∈ Rn, t ≥ 0, (1.6)

where u is a real function, with p = 2 and n = 2. Several properties of this equation

including existence and stability of solitary wave solutions have extensively been studied

in the literature (see for eg. [10], [13] [15], [23], [35]). Quite recently, Linares and Pastor

[24] considered the Cauchy problem associated to (1.1) and proved local existence of

solution for given data in Hs(R2), s > 3/4, using smoothing estimates for solutions of the

associated linear problem obtained in Faminskii [15] and the contraction mapping principle

introduced by Kenig, Ponce and Vega [19]. Also, using the conserved quantities (see

(2.3), (2.4) below) satisfied by the flow of (1.1) combined with the Gagliardo-Nirenberg

interpolation inequality, they were able to obtain an a priori estimate in H1(R2) for

small initial data which in turn implies global well-posedness for such data in H1(R2).

This result improved the previous one by Biagioni and Linares [10]. De Bouard in [13]

generalized the stability result in higher dimensions and proved that the solitary wave for

(1.6) is stable if and only if p < 4
n
. Therefore p = 4

n
is known as the critical case. In this

case, when n = 2, the equation (1.6) corresponds to the mZK equation (1.1).

In the context of plasma physics, the following equation

16ut + 30u1/2ux +∇2ux = 0, (1.7)

that describes ion-acoustic waves in a cold-ion plasma when the electrons are nonisother-

mal, is also named as the modified ZK equation. We will not consider this model here.

For details we refer to [27, 28, 34, 38] and references therein.

In 1996, Pelinovsky and Grimshaw [29] considered the instability development and

critical collapse of solitary wave considered in the framework of generalized Korteweg-de

Vries equation in one and two dimension. They presented a universal analytical theory

for the description of the development of solitary wave instability and the related critical

collapse in long-wave evolution equation. Their technique enables them to construct
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approximate solutions for self-similar critical collapse in the KdV-type evolution equation

and in this case, they say, the validity of their approach is guaranteed by the result of

Laedke et al in [22].

In Angulo et al [5], the work of [22] was recovered and detailed analysis of the asymptotic

behavior of the blowing up solutions in the critical case p = 2β + 1 for the generalized

KdV-type equation

ut + (up)x −Dβux = 0, x ∈ R, t ≥ 0,

where β ≥ 1, was established.

In 2000, Sipcic and Benney [36] reviewed the results regarding the radially symmetric

positive solitary wave solutions of mZK equation which are referred to as lump solutions.

They studied numerically the lump interactions and illustrate how the amplitude pertur-

bations resulting from interactions push solutions over the instability threshold. This work

was a confirmation of the analytic theory of singularity formation described in Pelinovsky

and Grimshaw [29].

Inspired from the results obtained in [22] and [4, 5], our work in this article addresses

the asymptotic behavior of solutions of (1.1). The negative energy assumption and the

spectral property in Lemma 2.4 (below) play crucial role to prove our main result. At this

point, it is worth noticing that, Merle [26] proved the existence of blow-up solution in the

energy space for the critical generalized KdV equation, using negative energy assumption

combined with virial type identity and Liouville theorem. At least in our knowledge, there

is no result of the blow-up solutions for the mZK equation, see also [24]. Generalizing

results from one dimensional case to the higher dimensional case is not always trivial. If

there is blow-up solution to the mZK equation (1.1) then our result shows how it occurs.

The plan of the paper is as follows. Section 2 is concerned with sharp conditions for

global well-posedness of (1.1) and some preliminary results. In section 3, we state and

prove the main result of this work. Section 4 is devoted to point out some concluding

remarks and finally in the appendix we provide proofs of some estimates that are used in

the proof of the main result.

Before leaving this section, we define some notations that will be used throughout this

article. The L2 based Sobolev space of order s will be denoted by Hs and ‖ · ‖ means
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‖ · ‖L2(R2). For 1 ≤ p, q, r <∞, the mixed space-time norm is defined as

‖f‖LpxLqyLrT :=

(∫
R

(∫
R

(∫ T

0

|f(x, y, t)|rdt
)q/r

dy

)p/q)1/p

,

with usual modifications in the case when p =∞, q =∞ or r =∞.

2. Preliminary Results

In this section we collect some results on the initial value problem and existence of

solitary wave solutions for the mZK equation. We also present some preliminary results

which are needed in our further investigations. The local well-posedness result to the IVP

(1.1) is stated as follows:

Theorem 2.1. For any u0 ∈ Hs(R2), s > 3/4, there exist T = T (‖u0‖Hs) > 0 and a

unique solution of the IVP (1.1) associated to the mZK equation defined in the interval

[0, T ] satisfying

u ∈ C([0, T ], Hs(R2)),

‖Ds
xux‖L∞x L2

yL
2
T

+ ‖Ds
yux‖L∞x L2

yL
2
T
<∞,

‖∂xu‖L3
TL
∞
x L
∞
y

+ ‖ux‖L9/4
T L∞x L

∞
y
<∞,

and

‖u‖L2
xL
∞
y L
∞
T
<∞.

The proof of this theorem can be found in Linares and Pastor [24] (see also [15] and

[10] for earlier results which are sufficient for our purpose). As stated earlier, this result

is proved by using smoothing estimates satisfied by the solution of the associated linear

problem combined with the contraction mapping principle.

To give the statement of the global well-posedness result we will consider the unique

solitary wave solution of the mZK equation defined by

φc(ξ, y) = u(x, y, t), where ξ = x− ct, (2.1)

which are smooth solution that vanish at infinity. Now, substituting φc in (1.1) and

assuming φc, φcξ , φcy , φcξξ , φcyy tend to zero as ξ →∞ and y →∞, we have that

∆φc + 2φ3
c − cφc = 0. (2.2)
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Note that the equation (2.2) satisfied by the solitary wave solution (2.1) coincides with

that for the stationary optical (bright) solitary waves in the two dimensional nonlinear

Schrödinger equation (see [20], [30], [31]). For the existence of solution to the equation

(2.2) see also [41] and [42].

Also, we record that the following quantities

I1(u(t)) =
1

2

∫
R2

u(t)2dx dy =
1

2

∫
R2

u2
0dx dy (2.3)

I2(u(t)) =
1

2

∫
R2

(u2
x + u2

y − u4)dx dy, (2.4)

are conserved by the flow of (1.1).

Now we are in position to state the global existence of solutions to the IVP (1.1) that

reads:

Theorem 2.2. Let u0 ∈ H1(R2). If ‖u0‖L2 <
√

3‖φ‖L2, φ = φc, for some c as in (2.1),

then the solution u of the IVP (1.1) given by Theorem 2.1 can be extended to any interval

of time [0, T ].

The proof of this theorem follows using an H1(R2)-a priori estimate that can be ob-

tained from conservations laws (2.3) and (2.4) and the Gagliardo-Nirenberg interpolation

inequality, see Linares and Pastor [24].

We observe that if I ′1 and I ′2 represent the Frechet derivatives of I1 and I2, then we have

〈I ′1(φc), v〉 = lim
h→0

I1(φc + hv)− I1(φc)
h

= 〈φc, v〉.

〈I ′2(φc), v〉 = lim
h→0

I2(φc + hv)− I2(φc)
h

= 〈−∆φc − 2φ3
c , v〉.

Therefore, in view of (2.2) we get,

I ′2(φc) + cI ′1(φc) = −∆φc − 2φ3
c + cφc = 0. (2.5)
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Let Hc be the linearized operator of I ′2 + cI ′1 around φc, namely Hc = I ′′2 (φc) + cI ′′1 (φc).

Now,

〈I ′′1 (φc)(v), w〉 = lim
h→0

〈I ′1(φc + hv), w〉 − 〈I ′1(φc), w〉
h

= lim
h→0

〈φc + hv, w〉 − 〈φc, w〉
h

= 〈v, w〉.

〈I ′′2 (φc)(v), w〉 = lim
h→0

〈I ′2(φc + hv), w〉 − 〈I ′2(φc), w〉
h

= lim
h→0

〈−∆(φc + hv)− (φc + hv)3, w〉 − 〈−∆φc − 2φ3
c , w〉

h

= 〈(−∆− 6φ2
c)(v), w〉.

Hence, we obtain,

〈Hcv, w〉 = 〈(I ′′2 (φc) + cI ′′1 (φc))(v), w〉 = 〈(−∆− 6φ2
c + c)v, w〉. (2.6)

Therefore, in particular, the equation (2.6) along with (2.2) yield

Hc(∂ξφc) = 0.

To proceed further with our analysis we need some hypotheses on φc and Hc.

Hypothesis 1 -(existence of solitary wave). There is an interval (c1, c2) ⊂ R such that for

any c ∈ (c1, c2), there exists a solution φc of (2.2) in H1(R2). The curve c 7→ φc for c > 0

is C1 with values in H2(R2). Moreover (1 + |ξ|)1/2 d
dc
φc, ∆φc ∈ L1(R2).

Hypothesis 2 - The null space of the operator Hc is spanned by the functions ∂ξφc and

∂yφc, i.e., the only zero modes of Hc are ∂ξφc and ∂yφc. Hc has a unique negative simple

eigenvalue with eigenfunction ψc. Besides the negative and zero eigenvalues, the rest of

the spectrum of Hc is positive and bounded away from zero. Moreover the curve c 7→ ψc

is continuous with values in H2(R2), 〈φc, ψc〉 6= 0 and (1 + |ξ|)1/2ψc, ∆ψc ∈ L1(R2).

Lemma 2.3. Hypotheses 1 and 2 are true for the case of the modified Zakharov-Kuznetsov

equation (1.1).
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Proof. Since the equation (2.2) coincides with that for the solitary waves for the two di-

mensional nonlinear Schrödinger (NLS) equation, the hypotheses on the existence follows

from that for the NLS equation, see Weinstein [41, 42]. The spectral properties follow

from the positivity property of the operator −∆ + c and the assumption on φc, see for

example, [2], [3], [13], [41] or [42]. �

Under the spectral hypothesis of the operator Hc stated above we have the following

result which is crucial to prove our main result of this work.

Lemma 2.4. Let h = φ− σ∆φ; σ < 0, φ = φc for some c, then

inf{〈Hcf, f〉 : ‖f‖L2 = 1, 〈h, f〉 = 0, f⊥φ2φxi , i = 1, 2} = ν > 0.

Proof. The proof of this lemma follows the same lines of arguments used to obtain similar

results in Angulo et al in [4, 5], so we omit the details. �

3. Stability theorem for the mZK in the critical case

To study the asymptotic behavior of the blowing up solutions of the mZK equation in

the critical case, we follow the idea introduced in Laedke et al [22] and Angulo et al [4, 5].

Let us start by introducing the following auxiliary function

ψ(x, y, t) = µ(t)−1u(µ(t)−1x, µ(t)−1y, t) (3.1)

where µ(t) is given by

µ(t) =
‖∇u(t)‖
‖∇φc‖

(3.2)

and 0 ≤ t ≤ t∗, with t∗ the maximal time of existence of the solution u of (1.1). It is

immediate to verify that the function ψ(x, y, t) satisfies the identities

i) I1(ψ(·, ·, t)) = I1(u0)

ii) I2(ψ(·, ·, t)) = 1
µ2(t)

I2(u0)

iii) 〈ψ(·, ·, t),∆ψ(·, ·, t)〉 = 〈φc,∆φc〉


. (3.3)

The following lemma provides the regularity property of the auxiliary function ψ whose

proof follows from the facts that µ ∈ C([0, t∗); R) and 0 < µ(t) <∞ for 0 ≤ t < t∗.
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Lemma 3.1. If u ∈ C([0; t∗), H1(R2)), then

ψ ∈ C([0, t∗), H1(R2)).

The notion of stability we are considering in this work is with respect to the form, i.e.,

up to translation in space. Therefore, to deal with it we introduce the orbit

O(φc) = {g|g = τ(r1,r2)φc for some (r1, r2) ∈ R2},

where τ(r1,r2) is the translation operator defined by

(τ(r1,r2)f)(x, y) = f(x+ r1, y + r2), for all (x, y) ∈ R2.

Now, to measure the deviation of ψ from the orbit O(φc) in H1(R2), we introduce the

pseudo-metric ρc defined by

ρc(ψ(·, ·, t), φc)2 = inf
(r1,r2)∈R2

{
‖τ(r1,r2)∇ψ(·, ·, t)−∇φc(·, ·)‖2

+ c‖τ(r1,r2)ψ(·, ·, t)− φc(·, ·)‖2
}
.

Finally, let us define the set K as

K = {u0 ∈ H1(R2) such that I2(u0) ≤ 0}. (3.4)

Observe that if ‖u0‖ ≤ ‖φc‖ for some c then we have I2(u0) ≥ 0. This observation

follows by using the sharp interpolation estimate established in Weinstein [39].

Now, we are in the position to state the main result of this work that deals with the

spatial structure of the solution to the mZK equation (1.1).

Theorem 3.2. Let φ = φc, c > 0 be a solitary wave solution of (1.1). For any ε > 0,

there is a δ(ε) > 0 such that if u0 ∈ K with ρc(u0, φc) < δ and u is the solution of (1.1)

with initial data u0, then u ∈ C([0, t∗), H1(R2)) and

inf
(r1,r2)∈R2

{
c‖u(·, ·, t)− µ(t)τ(r1,r2)φ(µ(t)(·, ·))‖2

+
1

µ2(t)
‖∇u(·, ·, t)− µ2(t)τ(−r1,−r2)∇φ(µ(t)(·, ·))‖2

}
< ε (3.5)

for all t ∈ [0, t∗), where t∗ is the maximal existence time for the solution u and µ is as

given in (3.2).
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Proof: Initially we assume µ(0) = 1, the general case will be treated later on. The

proof is based on the time dependent functional

Bt[u] =
1

µ2(t)
I2(u(t)) +

c

2

(
‖u(t)‖
‖φ‖

)2k

(‖u‖2 − ‖φ‖2)

where the natural number k will be chosen later. Note that, in view of the conserved

energy and charge, Bt[u] = Bt[u0]. Also, in terms of ψ, we have that

B̃t[ψ] := I2(ψ) +
c

2

(
‖ψ‖
‖φ‖

)2k

(‖ψ‖2 − ‖φ‖2) (3.6)

where the explicit dependence on µ disappears.

Using the argument described in [4, 5], the proof of the Theorem 3.2 follows, if we can

prove, modulo spatial translation, the inequalities

∆B̃t ≤ c0‖u0 − φ‖, (3.7)

and

∆B̃t ≥ c1‖ψ(·, ·, t)− φ(·, ·)‖2H1(R2) − c2
2∑
j=1

‖ψ(·, ·, t)− φ(·, ·)‖j+2
H1(R2)

−
2k∑
j=1

ckj‖ψ(·, ·, t)− φ(·, ·)‖j+2
H1(R2), (3.8)

where ∆B̃t = B̃t[ψ]− B̃t[φ], and ci, ckj are fixed constants.

The proofs of the estimates (3.7) and (3.8) will be presented in the Appendix. Now

we show that the estimates (3.7) and (3.8) imply the proof of the theorem. For this, let

u0 ∈ K with ‖u0 − φc‖H1 = δ and T̃ suitably chosen, for example as in (A.17) in the

Appendix. Then the estimates (3.7) and (3.8) yield, for t ∈ [0, T̃ ] that,

q
(
ρc(ψ(·, ·, t), φc(·, ·)

)
≤ ∆B̃t ≤ c0δ (3.9)

where q(x) = c̃1x
2 − c̃2

2∑
j=1

`j(c)x
j+2 −

2k∑
j=1

dk,jx
j+2.

Since ‖a(·, ·, t)‖2H1 = ρc(ψ(·, ·, t), φc(·, ·))2 is continuous function of t ∈ [0, t∗), it follows

from the inequality

q(ρc(ψ(·, ·, 0), φc(·, ·)) ≤ c0δ
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and (3.9), that given ε > 0, for all t ∈ [0, T̃ ],

ρc(ψ(·, ·, t), φc(·, ·)) ≤ ε (3.10)

provided that δ is chosen small enough. It can be shown that the estimate (3.10) holds

for all t ∈ [0, t∗) (see Appendix) and this completes the proof in the case µ(0) = 1. The

general case where the initial data is such that µ(0) 6= 1 can be treated exactly as in

Angulo et al [5], so we omit the details. 2

4. Concluding Remarks

Asymptotic behavior of wave propagation i.e., the phenomenon of wave collapse or

blow-up in finite time for many generalized models has been a subject of study in the

recent years. There are several works to address this subject in the critical cases of the

nonlinear Schrödinger equation and the KdV equation in the literature, see for example

[4], [5], [11], [22], [29], [36] and references therein. Our main result in this work proves that

the solutions to the mZK equation (1.1) which are initially close to a lump solitary wave,

and which may blow-up, do so according the scaling law. In other words, if there exists a

blow-up solution for the mZK equation (1.1) then the blow-up occurs along the solitary

wave. Our result is in accordance with the one predicted numerically in Pelinovsky and

Grimshaw [29] and Sipcic and Benney [36]. The scaling parameter µ is an auxiliary tool

that depends on the solution u. Note that, if one can prove the existence of blow-up

solution in finite time for the mZK equation (1.1) then the scaling parameter µ(t) may

also blow-up in finite time, which is the case while dealing with the NLS and the KdV

equations in the critical cases, see Laedke et al [22]. Finally, we would like to point

that there is an extensive numerical study about the self-similar blow-up solutions of the

generalized KdV equation in Dix and McKinney [14] that may serve as a motivation to

conduct a similar study for the model considered here.

Appendix A. Estimates used in the proof of the main result

In this section we will prove the estimates (3.7), (3.8) and the validity of the inequality

(3.10) for all t ∈ [0, t∗).

Lemma A.1. The estimate (3.7) holds true.
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Proof. The proof follows using the fact that u0 ∈ K, i.e., I2(u0) ≤ 0 and I2(φ) ≥ 0. Note

that the constant c0 in (3.7) depends on ‖φ‖. �

Lemma A.2. The estimate (3.8) holds true.

Proof. To establish this estimate we start considering the perturbation of the solitary

wave solution φ = φc

ψ(x+ γ1, y + γ2, t) = φ(x, y) + a(x, y, t), (A.11)

where (γ1, γ2) = γ(t) will be chosen later so as to minimize the functional

Πt(γ1, γ2) = ‖∇ψ(·+ γ1, ·+ γ2, t)−∇φ(·, ·)‖2 + c‖ψ(·+ γ1, ·+ γ2, t)− φ(·, ·)‖2. (A.12)

Using (A.11), the definition of Hc, Cauchy Schwartz inequality and Gagliardo-Nirenberg

interpolation estimate we can obtain

∆B̃t = B̃t[φ+ a]− B̃t[φ]

= I2(φ+ a)− I2(φ) +
c

2

(
‖φ+ a‖
‖φ‖

)2k

(‖φ+ a‖2 − ‖φ‖2)

≥ 〈Hca, a〉+
4ck

‖φ‖2
〈φ, a〉2 −

2∑
j=1

dj(c)‖a‖j+2
H1 −

2k+2∑
j=3

dkj(c)‖a‖jH1 , (A.13)

where dj(c) and dkj(c) are some positive constants.

The next lemma deals with obtaining a suitable lower bound on the functional Πt given

in (A.12).

Lemma A.3. Suppose that for some t ∈ [0, t∗) and some γ̃ = (γ̃1, γ̃2) ∈ R × R it is the

case that

Πt(γ̃) < ‖(∆ + c)1/2φc‖2. (A.14)

Then it follows that

inf{Πt(γ1, γ2) : (γ1, γ2) ∈ R× R} (A.15)

is attained at least once in R× R.

Proof. Let γ = (γ1, γ2). It is clear that Πt(γ) is a continuous function of γ ∈ R2. Moreover

lim
|γ|→∞

Πt(γ) = ‖∇ψ(t)‖2 + ‖∇φ‖2 + c‖ψ(t)‖2 + c‖φ‖2

= ‖(∆ + c)1/2φ‖2 + ‖∇φ‖2 + c‖u0‖2. (A.16)
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Therefore, hypothesis (A.14), the continuity of Πt(γ) and (A.16) lead to desired result. �

Next we need to obtain the hypothesis (A.14) is satisfied for all t in some interval. Let

ε > 0 be such that

ε2 <
1

2
max{1, c}‖(∆ + c)1/2φ‖2.

The solitary wave is globally defined and hence by the continuous dependence theory

(see [10]) for ε and T > 0, there exists a δ > 0 such that if ‖u0 − φ‖H1 < δ then the

corresponding solution of (1.1) exists at least for 0 ≤ t ≤ T and

‖u(·, ·, t)− φ(· − ct, ·)‖H1(R2) < ε/2

for all 0 ≤ t ≤ T . From the continuity of ψ and u it follows that there is a T1 > 0 such

that for all t ∈ [0, T1],

‖ψ(·, ·, t)− ψ(·, ·, 0)‖H1(R2) ≤ ε/4

and

‖u(·, ·, t)− u(·, ·, 0)‖H1(R2) ≤ ε/4.

Then for 0 ≤ t ≤ min{T, T1} = T̃ (say),

‖ψ(·, ·, t)− φ(· − ct, ·)‖ ≤ ‖ψ(·, ·, t)− u(·, ·, t)‖+ ‖u(·, ·, t)− φ(· − ct, ·, )‖ (A.17)

≤ ‖ψ(·, ·, t)− ψ(·, ·, 0)‖+ ‖u(·, ·, 0)− u(·, ·, t)‖+ ε/2 = ε.

Thus, the infimum in (A.15) is taken on at finite values γ(t) throughout some time interval

viz. [0, T̃ ].

Now, a compatibility relation is obtained by differentiating Πt(γ) with respect to γ1

and γ2 and evaluating at values that minimize Πt(γ)

d

dγ1

[∫
R2

(
|ψx(x+ γ1, y + γ2, t)− φx(x, y)|2 + |ψy(x+ γ1, y + γ2, t)− φy(x, y)|2

)
dx dy

+ c

∫
R2

(
|ψ(x+ γ1, y + γ2, t)− φ(x, y)|2

)
dx dy

]
= 2

∫
R2

[axφxx + ayφxy + caφx]dx dy.

Using −∆φ− 2φ3 + cφ = 0, we obtain the first compatibility condition∫
R2

aφ2φxdx dy = 0. (A.18)
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Analogously we can obtain the second compatibility condition∫
R2

aφ2φydx dy = 0. (A.19)

The issue to obtain a lower bound (3.8) for the right-hand side of inequality (A.13) is

the next goal. Attention is now turned to estimating the term

〈Hca, a〉+
4kc

‖φ‖2
(〈a, φ〉)2

where a satisfies the compatibility relations (A.18) and (A.19).

Let a‖ =
〈a, h〉
‖h‖2

h and a⊥ = a− a‖, where h = φ− σ∆φ with σ < 0 as in Lemma 2.4. It

follows from properties of a and h that 〈a⊥, h〉 = 0. Now, together with this orthogonality

relation and compatibility conditions in (A.18) and (A.19) we can use Lemma 2.4 to obtain

〈Hca⊥, a⊥〉 ≥ D1‖a⊥‖2, D1 > 0. (A.20)

〈Hca‖, a‖〉 = 〈Hc
〈a, h〉h
‖h‖2

,
〈a, h〉h
‖h‖2

〉

=
〈a, h〉2

‖h‖4
〈Hch, h〉 =

‖a‖‖2

‖h‖2
〈Hch, h〉 (A.21)

2〈Hca‖, a⊥〉 = 2
〈a, h〉
‖h‖2

〈Hch, a⊥〉 ≥ −D2‖a⊥‖ ‖a‖‖ (A.22)

for some positive constants D1 and D2. Thus, from the Cauchy-Schwartz inequality we

can get

4kc

‖φ‖2
〈a, φ〉2 ≥ 4kc

‖φ‖2
(
〈a, h〉2 + σ〈a, h〉‖∇a‖2

)
≥ 4kc

‖φ‖2
(
‖h‖2‖a‖‖2 + σ‖h‖ ‖a‖ ‖∇a‖2

)
≥ 4kc

‖φ‖2
‖h‖2‖a‖‖2 + 4kcσD3‖a‖3H1 (A.23)

where D3 > 0 is a constant.

Choose θ > 0 is such that D1−θD2 ≡ D4 > 0 and ‖a⊥‖ ‖a‖‖ ≤ θ‖a⊥‖2 +
1

θ
‖a‖‖2. Now,

we can choose k in such way that 4kc
‖φ‖2‖h‖

2 + 〈Hch,h〉
‖h‖2 −

D2

θ
:= D5 > 0 to obtain

〈Hca, a〉+
4kc

‖φ‖2
〈a, φ〉2 ≥ D5‖a‖‖2 +D4‖a⊥‖2 + 4kcσD3‖a‖3H1

≥ D′‖a‖2 −D′′‖a‖3H1 (A.24)
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for some positive constants D′ and D′′.

Therefore, we have

〈Hca, a〉+
4kc

‖φ‖2
〈a, φ〉2 ≥ D̃1‖a‖2H1 − D̃2‖a‖3H1 , (A.25)

with D̃1, D̃2 > 0.

Finally using (A.25) in (A.13) we obtain

∆B̃t ≥ c1‖a‖2H1 −
2∑
j=1

cj‖a‖j+2
H1 −

2k∑
j=1

ck,j‖a‖j+2
H1 , (A.26)

where the constants are positive depending only on c. �

Lemma A.4. The inequality (3.10) holds for all t ∈ [0, t∗).

Proof. To show that the inequality (3.10) holds true for all t ∈ [0, t∗), we follow the

method introduced in Bona [12] and later used in Angulo et al [4, 5]. Consider the set M

defined by

M =
{
t : the infimum in (A.15) is attained at finite values of γ = (γ1, γ2)

}
.

It is evident from the discussion above that [0, T̃ ] ⊂ M. Let T1 be the largest value

such that [0, T1) ⊂M and suppose that T1 < t∗. Now using (3.10) we get,

inf Πt = ρc
(
ψ(·, ·, t), φc(·, ·)

)2 ≤ ε2 ≤ 1

2
‖(∆ + c)

1
2φc‖2. (A.27)

Since inf Πt is continuous on t for all t ∈ [0, t∗), we can find a T > 0 such that

inf Πt < ‖(∆ + c)
1
2φc‖2,

for all t ∈ [T1, T1 + T ]. But then Lemma A.3 implies that the infimum in (A.15) is taken

at finite values of γ(t) and this contradicts the choice of T1. Hence, we must have T1 = t∗

and this completes the proof of the theorem when µ(0) = 1. �
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