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Formation of Higher-dimensional

Topological Black Holes

Filipe C. Mena, José Natário and Paul Tod

Abstract. We study higher dimensional gravitational collapse to topological
black holes in two steps.

Firstly, we construct some (n + 2)-dimensional collapsing space-times,
which include generalised Lemâıtre-Tolman-Bondi-like solutions, and we prove
that these can be matched to static Λ-vacuum exterior space-times. We then
investigate the global properties of the matched solutions which, besides black
holes, may include the existence of naked singularities and wormholes.

Secondly, we consider as interiors classes of 5-dimensional collapsing
solutions built on Riemannian Bianchi IX spatial metrics matched to radiating
exteriors given by the Bizoń-Chmaj-Schmidt metric.

In some cases, the data at the boundary for the exterior can be chosen
to be close to the data for the Schwarzschild solution.

1. Introduction

Black holes in higher dimensions play an important role in theoretical physics,
particularly in string theory. Although there has been work on both mathemat-
ical and physical aspects of higher dimensional topological black holes (see e.g.
[2, 11]), little has been done concerning the existence and stability of dynamical
processes involved in their formation. This problem might be tackled by construct-
ing appropriate matched spacetimes which settle through gravitational collapse to
a topological black hole solution. Past approaches to this problem in 4-dimensions
include the works of [16, 19] for the collapse of Friedman-Lemâıtre-Robertson-
Walker (FLRW) fluids and, more recently, [17] for the collapse of inhomogeneous
and anisotropic fluids.

In this paper, we consider this problem in higher dimensions. We start in
section 2 by considering a family of solutions to the Λ-vacuum Einstein equations in
n+2 dimensions which contains black hole solutions. We find some possible interior



2 F.C. Mena, J. Natário and P. Tod Ann. Henri Poincaré

collapsing solutions with dust as source and study the corresponding matching
problem.

The metric exterior builds the (n+2)-dimensional space-time M from a Rie-
mannian n-dimensional Einstein manifold N . Black holes with this metric are dif-
ficult to integrate into the usual intuition of a black hole as a simple object formed
in collapse and this is what the work in section 2 explores. The space-times are
weakly-asymptotically-simple but not asymptotically-flat (or dS or AdS)1, which
cannot happen in 4-dimensions. We shall seek to fill them in with dust solutions,
so that they are formed by collapse, and we find large classes of examples which
we present in section 2.

When the Einstein manifold N is not cobordant to a point (e.g. CP
2) the

solutions we find cannot have a regular origin, though they can be regular with
space-time wormholes or a ‘cusp’ at the origin. When there is a singularity at the
origin, it may or may not be visible from infinity.

All these filled-in solutions have static exteriors. As a step in the direction
of constructing a dust collapse with a radiating exterior, we go on in section
3 to consider the 5-dimensional Bizoń-Chmaj-Schmidt (BCS) exterior [3], which
has a deformed 3-sphere as the metric of constant (t, r). The solution is known
[7, 15] to settle down via radiation to the round 3-sphere and the 5-dimensional
Schwarzschild solution. We show how this exterior can be matched, at least in
the neighbourhood of the matching surface, to one of a range of collapsing dust
interiors. We also show that, for some of these interiors, the data at the matching
surface can be chosen to be close to the data for the 5-dimensional Schwarzschild
exterior. Since this solution is known to be stable [7], it is reasonable to expect
that the exterior will settle down to the Schwarzschild solution.

2. Collapse to Black Holes without Gravitational Wave Emission

2.1. A family of higher-dimensional black holes

We start by stating our conventions.

Definition 2.1. An (n + 2)-dimensional Lorentzian manifold (M, gab) is said to
be a solution of the Einstein equations with cosmological constant Λ and energy-
momentum tensor Tab if its Ricci tensor Rab satisfies

Rab = Λgab + κ(Tab −
1

n
Tgab)

where κ is a constant and T = T a
a.

Remark 2.2. The Einstein equations can also be written as

Rab −
1

2
Rgab +

nΛ

2
gab = κTab,

where R = Ra
a is the Ricci scalar.

1Since the metric on the sections of I need not be a metric of constant curvature.
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We wish to consider the family of higher-dimensional black holes given in the
following proposition2.

Proposition 2.3. Let (N, dσ2) be an n-dimensional Riemannian Einstein manifold
with Ricci scalar nλ, and let

V (r) =
λ

n− 1
−

2m

rn−1
−

Λr2

n+ 1
, (1)

where m and Λ are constants. If I ⊂ R is an open interval where V is well defined
and does not vanish then the (n + 2)-dimensional Lorentzian manifold (M,ds2)
given by M = R × I ×N and

ds2 = −V (r)dt2 + (V (r))−1dr2 + r2dσ2, (2)

is a solution of the vacuum Einstein equations with cosmological constant Λ.

Proposition 2.4. The metrics (2) are conformally-compactifiable at infinity.

Proof. Using the null coordinate u defined by

du = dt−
dr

V
(3)

we can write the metric as

ds2 = −V du2 − 2drdu+ r2dσ2. (4)

Setting L = r−1 we have

dŝ2 := L2ds2 = −L2V du2 + 2dudL+ dσ2.

Now clearly I is at L = 0, so that I ∼ R × N . Note that L2V ∼ −Λ/(n + 1)
as L → 0 so that, as expected, I is time-like, null or space-like according as
Λ < 0,= 0 or > 0. �

These metrics are weakly-asymptotically-simple, as we shall see below. However
they are not, in general, asymptotically-flat (or dS or AdS) and we shall refer to
them rather as asymptotically conical (following [11]).

Proposition 2.5. The metrics (2) are weakly-asymptotically-simple.

Proof. To see this, we look at null geodesics. If xi, i = 1, . . . , n are coordinates on N
then a geodesic in M is given by first choosing a geodesic in N , say parameterised
by arc-length as xi(σ); then choose (t(s), r(s)) and σ(s) to satisfy

ṫ = E/V (r)

σ̇ = J/r2

ṙ2 = E2 −
J2V

r2

2This is a small generalisation of the metrics in [12], clearly known to [11].
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where E and J are constants of integration. Written like this, the geodesic equa-
tions are formally identical to the null geodesic equations for the (four-dimensional)
Schwarzschild solution. Thus, the ‘radial’ null geodesics with J = 0 and ṙ = ±E
can be extended through the zeroes of V , when these exist, in the usual way by
defining

du = dt− dr/V, dv = dt+ dr/V.

One may obtain complete extensions, parallelling the analogous cases in
4-dimensions. �

Remark 2.6.

• From the geodesic equations in the preceding proof one can see that for m > 0
and λ > 0 there are null geodesics at a fixed value of r satisfying

rn−1 =
m(n2 − 1)

λ
,

though these won’t be closed unless the corresponding geodesic on N is closed.
• With Λ = 0, λ > 0 and m > 0, V has a single zero, corresponding to an event

horizon, and asymptotes to a positive constant at large r. This is a black-hole
solution, which can be thought of as generalising the Schwarzschild metric.
The (degenerate) metric on the horizon is dσ2, which is also the conformal
metric on I .

• With Λ > 0, m > 0 and large enough positive λ, V (r) is positive between two
zeroes, corresponding to a black-hole event horizon and a cosmological event
horizon. The solution generalises the asymptotically-dS Kottler solution.

• With Λ < 0 and m > 0, V again has a single zero, corresponding to an event
horizon, and the solution generalises the asymptotically-AdS Kottler solution.

• The solutions in the previous class with λ ≤ 0 may have no global sym-
metries except the staticity Killing vector. This is because compact, negative
scalar curvature Einstein manifolds have no global symmetries, nor does, for
example, the Ricci-flat metric on K3 (an example with λ = 0 and n = 4).

2.2. Possible interiors

2.2.1. Some Einstein metrics. We construct some Einstein (n + 1)-metrics in the
familiar way as cones on Einstein n-metrics.

Proposition 2.7. If I ⊂ R is an open interval, f : I → R is a positive smooth
function and (N, dσ2) is as before, then the Riemannian metric defined on the
(n+ 1)-dimensional manifold I ×N by

dρ2 + f(ρ)2dσ2 (5)

is Einstein with Ricci scalar k(n+ 1) precisely in the following cases:
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1. If k > 0 then

k = ν2n, λ = ν2(n− 1), f = sin(νρ)

for some ν > 0.
2. If k = 0 then

λ = n− 1, f = ρ.

3. If k < 0 then

k = −ν2n, λ = ν2(n− 1), f = sinh(νρ),

or
k = −ν2n, λ = 0, f = e±νρ,

or

k = −ν2n, λ = −ν2(n− 1), f = cosh(νρ),

for some ν > 0, according as λ > 0, λ = 0 or λ < 0.

These metrics typically have singularities at the origin ρ = 0.

Proposition 2.8. The Kretschmann scalar K of the (n + 1)-metric above (that is
the trace of the square of the Riemann tensor) is related to the square C2 of the
Weyl tensor of the base n-metric by

K =
C2

f4
+ const. (6)

Therefore the (n+1)-metric is singular anywhere f vanishes, unless the n-metric is
conformally-flat (like an n-sphere with the standard metric3). This can be avoided
in case 3 with f = e±νρ when the metric has an internal infinity (or a cusp) or
f = cosh(νρ) when the metric has a minimal surface and a second asymptotic
region, which will correspond to a space-time wormhole. Otherwise, if f has a zero
at which the metric is singular, we shall need to check whether this singularity is
visible from infinity in the resulting space-time.

2.2.2. Some FLRW-like metrics. The previous subsection suggests a family of
(n+ 2)-dimensional FLRW-like metrics.

Proposition 2.9. The (n+ 2)-dimensional Lorentzian metric

ds2 = −dτ2 +R2(τ)(dρ2 + f2(ρ)dσ2). (7)

is a solution of the Einstein equations with cosmological constant Λ and energy-
momentum tensor Tab = µuaub, corresponding to a dust fluid with density µ and
velocity uadxa = dτ , if and only if R(τ) and µ(τ) satisfy the conservation equation

3Notice that there exist Einstein metrics on certain spheres which are not conformally flat [5],
which could be used here and elsewhere in this article.
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µRn+1 = µ0, (8)

for constant µ0, and the Friedman-like equation

Ṙ2

R2
+

k

nR2
=

2κµ

n(n+ 1)
+

Λ

n+ 1
. (9)

Remark 2.10. There are other solutions of this type which we shall exploit below
in section 3, namely

ds2 = −dτ2 +R2(τ)hijdx
idxj , (10)

where hijdx
idxj is chosen to be any Einstein (n + 1)-metric with Ricci scalar

k(n+ 1). Explicitly we shall take the Einstein metric to be one of Eguchi-Hansen
[8], k-Eguchi-Hansen [18] or k-Taub-NUT [6]. FLRW-like dust cosmologies are
again given by solutions of (8)-(9).

2.2.3. Some Lemâıtre-Tolman-Bondi-like solutions. We shall now introduce
Lemâıtre-Tolman-Bondi-like (LTB-like) solutions, generalising those of [10], re-
lated to the metrics of subsection 2.2.2.

Proposition 2.11. The (n+ 2)-dimensional Lorentzian metric

ds2 = −dτ2 +A(τ, ρ)2dρ2 +B(τ, ρ)2dσ2, (11)

is a solution of the Einstein equations with cosmological constant Λ and energy-
momentum tensor Tab = µuaub, corresponding to a dust with density µ and veloc-
ity uadxa = dτ , if and only if A(τ, ρ), B(τ, ρ) and µ(τ, ρ) satisfy

A = B′(1 + w(ρ)), (12)

µABn = M ′(ρ)(1 + w(ρ)), (13)

for some functions w(ρ) and M(ρ), and

Ḃ2Bn−1 +

(

λ

n− 1
−

1

(1 + w(ρ))2
−

Λ

n+ 1
B2

)

Bn−1 =
2κM(ρ)

n
(14)

(where dot and prime denote differentiation with respect to τ and ρ).

Remark 2.12. This metric has three free functions of ρ, namely w(ρ),M(ρ) and
B(0, ρ), one of which can be removed by coordinate freedom.
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2.3. Matching

In this subsection, we seek to match an interior represented by the metric (7) to a
static exterior represented by the metric (2) at a surface Ω ruled by radial time-like
geodesics in (2) which is comoving, i.e. a surface of constant ρ (say ρ = ρ0) in (7).
We find that this can be done, subject to conditions found below.

Proposition 2.13. The metric (2) can be matched to the FLRW-like metric (7) at

ρ = ρ0 provided that f ′(ρ0) > 0 and m =
κµ0f(ρ0)

n+1

n(n+ 1)
.

Proof. The interior metric on the matching surface Ω is

−dτ2 +R(τ)2f(ρ0)
2dσ2,

while the geodesic in the exterior, parameterised by proper time τ , has

ṫ =
E

V
, ṙ2 = E2 − V,

and the exterior metric on Ω becomes

−dτ2 + r(τ)2dσ2.

Introducing
Ω
= to mean equal at Ω we must then have

r
Ω
= R(τ)f(ρ0). (15)

For the second fundamental form, the matching reduces to a calculation already
done in [17], and is

V ṫ

r

Ω
=

f ′

Rf
, (16)

which, with (15) and the geodesic equation, reduces to

E = f ′(ρ0). (17)

Since we need E > 0, this constrains the matching to a region where f ′ > 0. The
other geodesic equation, with the dot of (15), is

ṙ2 = E2 − V = Ṙ2f(ρ0)
2,

which, with (1), reduces to the Friedman equation (9) if we make the identifications

m =
κµ0f(ρ0)

n+1

n(n+ 1)
, (18)

and

E2 =
λ

n− 1
−
kf(ρ0)

2

n
.
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The first of these determines the mass m of the exterior from the density and size
of the interior. The second is an identity, as can be checked from the formulae in
section 2.2.1. �

Remark 2.14. We shall use the term FLRW-Kottler space-times for these matched
solutions. Since the matching requires m > 0 in the exterior and V > 0 at Ω, we
can have FLRW-Kottler space-times with any sign on Λ for λ > 0, but if λ ≤ 0
then the matching requires Λ < 0.

Proposition 2.15. The metric (2) can be matched to the LTB-like metric (11) at

ρ = ρ0 provided that 1 + w(ρ0) > 0 and m =
κ

n
M(ρ0).

Proof. The proof is analogous to the previous one, and we obtain

r
Ω
= B(τ, ρ0),

E = (1 + w(ρ0))
−1,

m =
κ

n
M(ρ0),

in place of (15), (17), and (18) respectively. �

Remark 2.16. We shall use the term LTB-Kottler space-times for these matched
solutions.

2.4. Global Properties

We will now analyse in detail the global properties of the FLRW-Kottler spacetime
in the three cases Λ = 0, Λ > 0 and Λ < 0, and make some remarks about the
global properties of the LTB-Kottler spacetime.

Proposition 2.17. If Λ = 0 (hence λ > 0) and (N, dσ2) is not an n-sphere then the
locally naked singularity of the FLRW-Kottler spacetime at ρ = 0 is always visible
from I + for k ≤ 0, but can be hidden if k > 0 and n ≥ 4 (space-time dimension
n+ 2 ≥ 6).

Proof. The first statement is clear from the Penrose diagram depicted in Figure 1.
For the second statement we must compare the conformal lifetime of the FLRW
universe

∆T = 2

∫ Rmax

0

dR

RṘ
=

2π

ν(n− 1)

with the supremum of the possible values of ρ0, which is π
2ν . For the singularity

to be hidden it is necessary that the radial light ray emanating from ρ = 0 at the
Big Bang is to the future of the future event horizon, and it is clear that in this
case one will have ρ0 >

∆T
2 . This is only possible if π

2ν >
π

ν(n−1) , i.e. n > 3. �

Remark 2.18. A special role for space-time dimension n+ 2 = 6 in dust collapse
was also found in [13].
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I
+

I
+

I −
I −

(a) (b)

Figure 1. Penrose diagram for Λ = 0 and (a) k ≤ 0; (b) k > 0,
showing the matching surfaces and the horizons.

Proposition 2.19. If Λ > 0 (hence λ > 0) and (N, dσ2) is not an n-sphere then the
locally naked singularity of the FLRW-Kottler spacetime at ρ = 0 can be always be
hidden except if the FLRW universe is recollapsing (hence k > 0) and n < 4.

Proof. If the FLRW universe is recollapsing then one can show that its conformal
lifetime is an increasing function of Λ, and approaches 2π

ν(n−1) as Λ → 0. Therefore

the singularity can be hidden for sufficiently small Λ if n ≥ 4, but not if n < 4. If the
FLRW universe is not recollapsing then one can show that its conformal lifetime
is a decreasing function of Λ which approaches zero as Λ → +∞. Therefore the
singularity can be hidden for sufficiently large Λ.

I +I +

I −I −

(a) (b)

Figure 2. Penrose diagram for Λ > 0 with the FLRW universe
(a) recollapsing; (b) non-recollapsing, showing the matching sur-
faces and the horizons.

Proposition 2.20. For Λ < 0 the FLRW-Kottler spacetime satisfies the following:

1. If λ > 0 and (N, dσ2) is not an n-sphere then the locally naked singularity of
the FLRW-Kottler spacetime at ρ = 0 can always be hidden.

2. If λ = 0 then the cusp singularity is not locally naked.
3. If λ < 0 then no causal curve can cross the wormhole from one I to the

other.

Proof. To prove the first statement one just has to check that the conformal lifetime
of the FLRW universe goes to zero as Λ → −∞. Therefore one can always hide
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the singularity by taking Λ small enough. The second statement follows from the
fact that for λ = 0 one must have f(ρ) = eνρ, and hence the cusp singularity
is at ρ = −∞. To prove the third statement (which can be seen, essentially, as
a corollary of a result of Galloway [9]) one notices that the future horizons hit
the matching surfaces at marginally outer trapped surfaces. The set of all these
surfaces forms the curve Ṙ + ν tanh(νρ) = 0, which can be seen to be spacelike
with the help of the Friedman-like equation (9). A similar argument shows that
the past horizons are connected by the spacelike curve of marginally anti-trapped
surfaces. The statement now follows from the observation that these two curves
touch at Ṙ = ρ = 0. �

II I1I2

(a) (b) (c)

Figure 3. Penrose diagram for Λ < 0 and (a) λ > 0; (b) λ = 0;
(c) λ < 0, showing the matching surfaces and the horizons.

Remark 2.21. The global properties of the LTB-Kottler spacetime obtained in
Proposition 2.15 are much more diverse. For instance, one can easily find ex-
amples of black hole formation with wormholes inside the matter with positive λ
and Λ = 0 (similar results in 4-dimensions are in [14]). Indeed, take data

B(0, ρ) = a2 + ρ2, Ḃ(0, ρ) = 0, A(0, ρ) = 1.

Then τ = 0 is a surface of time symmetry, the metric on τ = 0 has a minimal
surface at ρ = 0, and (1 + w)−1 = 2ρ. Equation (14) becomes

Ḃ2 = −

(

λ

n− 1
− 4ρ2

)

+
2κM(ρ)

n
B1−n.

We restrict ρ so that the first term is strictly negative,

ρ2 <
λ

4(n− 1)
, (19)

so that B necessarily expands from an initial zero, through a maximum at the
moment of time symmetry to a final singularity. Note that M(ρ) is fixed by the

condition Ḃ(0, ρ) = 0 to be

M(ρ) =
n

2κ
(a2 + ρ2)n−1

(

λ

n− 1
− 4ρ2

)

.
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From (13) we calculate

µ(0, ρ) =
n

2κ

(λ− 4a2 − 4nρ2)

(a2 + ρ2)2

and for this to be positive we must impose another condition on ρ:

ρ2 <
λ− 4a2

4n
. (20)

If we can ensure that there is no shell-crossing and then match to the exterior at
a value of ρ satisfying the two restrictions (19) and (20) then we have formation
of a black hole for λ > 0 with Λ = 0 and a wormhole.

To rule out shell-crossing, which would occur at a zero of A in (11), we
consider the (ρ, ρ) component of the Einstein equations. This is

Ä

A
+ n

ȦḂ

AB
−

n

AB

(

B′

A

)′

=
κµ

n
,

so that

∂

∂τ

(

BnȦ
)

= 2nBn−1 +
κM ′

2nρ
.

The right-hand-side is positive so that Ȧ > 0 for τ > 0 and so A is never zero, i.e.
there is no shell-crossing, for τ ≥ 0. Since A is an even function of τ this shows
that there is no shell-crossing at all for this example.

3. Collapse to Black Hole with Gravitational Wave Emission

The matchings in the previous section involved static exteriors. In this section,
we shall consider gravitational collapse with a gravitational wave exterior, so that
the exterior metrics will be time-dependent generalisations of those in (2). For
simplicity, we confine our attention to one example, the Bizoń-Chmaj-Schmidt
metric in (4 + 1)-dimensions [3], though a similar ansatz can be made in other
dimensions and with other symmetries (see [4]). We shall consider three different
interiors with this exterior, built on Riemannian Bianchi type IX spatial metrics.

3.1. The Exterior: Bizoń-Chmaj-Schmidt metric

Consider the metric [3]

ds2+ = −Ae−2δdt2 +A−1dr2 +
r2

4
e2B(σ2

1 + σ2
2) +

r2

4
e−4Bσ2

3 (21)

where A, δ and B are functions of t and r. The one-forms σi are left-invariant for
the standard Lie group structure on S3, satisfy the differential relations dσi =
1
2ǫijkσj ∧ σk, and can be taken to be
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σ1 = cosψdθ + sin θ sinψdφ

σ2 = sinψdθ − sin θ cosψdφ (22)

σ3 = dψ + cos θdφ

where θ, ψ, φ are Euler angles on S3 with 0 < θ < π, 0 < φ < 2π and 0 < ψ < 4π.
The Schwarzschild limit of (21) is obtained by setting B = 0. The space-time with
B 6= 0 is interpreted as containing pure gravitational waves with radial symmetry
[3]. Note that there is a residual coordinate freedom

t→ t̂ = f(t); δ → δ̂ = δ + log ḟ (23)

in the metric (21), which one can exploit to choose δ arbitrarily along a timelike
curve.

The (4 + 1)-dimensional vacuum EFEs give

∂rA = −
2A

r
+

1

3r
(8e−2B − 2e−8B) − 2r(e2δA−1(∂tB)2 +A(∂rB)2) (24)

∂tA = −4rA(∂tB)(∂rB) (25)

∂rδ = −2r(e2δA−2(∂tB)2 + (∂rB)2) (26)

together with the quasi-linear wave equation for B

∂t(e
δA−1r3(∂tB)) − ∂r(e

−δAr3(∂rB)) +
4

3
e−δr(e−2B − e−8B) = 0. (27)

In [3] the authors solve this system by giving B and ∂tB at t = 0 with A(0, 0) =
1 and δ(t, 0) = 0. We shall be interested in giving data A, B and the normal
derivative ∇nB at the timelike boundary Ω of the collapsing interior, which is

noncharacteristic for this system, with the gauge choice δ
Ω
= 0. Uniqueness and

local existence follow as standard. From [15], [7] one knows that the 5-dimensional
Schwarzschild metric is stable among the BCS solutions, so that if data close to
that for Schwarzschild is given on an asymptotically-flat hypersurface then the
solution will exist forever and stay close to the Schwarzschild solution. As we shall
see, data on Ω can be chosen to be close to data for Schwarzschild. This is not
sufficient to deduce that the solution exists forever and is asymptotically-flat in
the exterior, but it makes it rather plausible.
The matching surface is parameterised by

Ω+ = {t(τ), r(τ)},

and the first fundamental form on Ω+ is

ds2+|Ω+ = −dτ2 +
r2

4
e2B(σ2

1 + σ2
2) +

r2

4
e−4Bσ2

3 .

The normal vector to the matching surface is
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na+ = ṙ
eδ

A
∂t +Ae−δ ṫ∂r,

where the dot denotes differentiation with respect to the parameter τ . The bound-
ary as seen from the exterior is ruled by geodesics which obey

Ae−2δ ṫ2 −A−1ṙ2 = 1. (28)

The second fundamental form on Ω+ reads

K+
11 = K+

22 =
r2

4
e2B∇nB +

r

4
e2BAe−δ ṫ,

K+
33 = −

r2e−4B

2
∇nB +

r

4
e−4BAe−δ ṫ.

3.2. The Interiors

As interior metrics, we shall consider three classes of FLRW-like solutions based on
Riemannian Bianchi-IX spatial metrics which are respectively the Eguchi-Hanson
metric (with Rij = 0), the k-Eguchi-Hanson metric (with Rij = kgij excluding
the case k = 0) and the k-Taub-NUT metric (with Rij = kgij , including k = 0 as
a particular case). We summarize our results as follows:

Theorem 3.1. In each case, the interior metric gives consistent data for the metric
(21) at a comoving time-like hypersurface. Local existence of the radiating exterior
in the neighbourhood of the matching surface is then guaranteed. In the case of
Eguchi-Hanson and k-Taub-NUT with k < 0, the data can be chosen to be close
to the data for the Schwarzschild solution.

3.2.1. The Eguchi-Hanson metric. Eguchi and Hanson found a class of self-dual
solutions to the Euclidean Einstein equations with metric given by [8]

hEH =

(

1 −
a4

ρ4

)−1

dρ2 +
ρ2

4
(σ2

1 + σ2
2) +

ρ2

4

(

1 −
a4

ρ4

)

σ2
3 (29)

with σi given by (22) and a is a real constant. The level sets of ρ are topologically
S3/Z2, rather than S3, but the corresponding quotient can also be taken on the
metric (21).
The FLRW-like metric built on this is

ds2− = −dτ2 +R2(τ)hEH ,

with the Einstein equations for a dust source reducing to

µR4 = µ0, Ṙ
2 =

κµ0

6R2
. (30)

We shall match at ρ = ρ0 so that Ω− is parameterised by

Ω− = {τ, ρ = ρ0}.
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The corresponding first fundamental form on Ω− is

ds2|Ω− = −dτ2 +R2(τ)

(

ρ2

4
(1 −

a4

ρ4
)σ2

3 +
ρ2

4
(σ2

1 + σ2
2)

)

,

and the equality of the first fundamental forms then gives

r
Ω
= Rρe−B,

e−6B Ω
= 1 −

a4

ρ4
. (31)

The normal vector to the matching surface is

n− =
1

R

(

1 −
a4

ρ4

)
1
2

∂ρ,

and the associated non-zero components of the second fundamental form on Ω−

are

K−

11 = K−

22
Ω
=

ρR

4

(

1 −
a4

ρ4

)

1
2

,

K−

33
Ω
=

R

4

(

ρ+
a4

ρ3

)(

1 −
a4

ρ4

)

1
2

.

The equality of the second fundamental forms gives

∇nB
Ω
= −

2a4

3Rρ5

(

1 −
a4

ρ4

)−
1
2

,

Ae−δ ṫ
Ω
= e2B

(

1 −
a4

3ρ4

)

. (32)

Then from (28), (30) and (31) we calculate

A
Ω
= e4B

(

1 −
a4

3ρ4

)2

−
κµ0

6r2
ρ4e−4B. (33)

From the EFEs (24)-(26) on Ω we get (using the matching conditions)

∂tB
Ω
= −∇nBṙe

−δ, ∂rB
Ω
= ∇nBṫe

−δ,

and then it is straightforward to check that the expression (33) for A is consistent

with Ȧ calculated from (24) and (25).
At this point, we have B,∇nB and A on Ω, so that (32) gives the combination

e−δ ṫ. We cannot expect to obtain the two factors separately because of the gauge
freedom, which we can use to set δ = 0 on Ω.
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By (31) we have B
Ω
= O(a4/ρ4) and by (32) ∇nB

Ω
= (ρR)−1O(a4/ρ4) and,

to say that the data is close to Schwarzschild data, we want these to be small.
The first term is small if ρ ≫ a. The second term has dimension (length)−1 and
will increase without bound as R decreases to zero in the contracting direction.
This will only happen inside the horizon. If we restrict R by its value when a
marginally-outer-trapped surface forms on Ω then, from the Friedman equation
and with ρ≫ a, this happens when

R2ρ2 ∼ κµ0ρ
4,

so that we control ∇nB on Ω by controlling µ0. Now by choice of the location of
Ω, at ρ = ρ0, and choice of µ0 we can choose data close to Schwarzschild.

3.2.2. The k-Eguchi-Hanson metric. By this we mean the metric of Pedersen [18],
which can be regarded as the Eguchi-Hanson metric with a cosmological constant
(k rather than Λ, with our conventions), given by

hkEH = ∆−1dρ2 +
ρ2

4
(σ2

1 + σ2
2) +

ρ2

4
∆σ2

3 , (34)

where ∆ = 1 −
a4

ρ4
−
k

6
ρ2. This metric is complete for k < 0 and

a4 =
4

3k2
(p− 2)2(p+ 1), ρ >

(

−
2(p− 2)

k

)
1
2

,

where p ≥ 3 in an integer. Then the singularity at ∆ = 0 is a removable bolt and
the level sets of ρ are topologically S3/Zp. Since k is related to a for a complete
solution, we cannot obtain the previous case from this case by taking k → 0.
However, the matching formulae do formally allow this limit, as we shall see.

Now the Einstein equations for dust source reduce to

µR4 = µ0, Ṙ2 +
k

3
=
κµ0

6R2
. (35)

We again take the matching surface at constant ρ so that the first fundamental
form on Ω− is

ds2−|Ω− = −dτ2 +R2(τ)

(

ρ2

4
(σ2

1 + σ2
2) +

ρ2

4
∆σ2

3

)

.

The equality of the first fundamental forms on Ω gives

r
Ω
= Rρe−B,

e−6B Ω
= ∆. (36)

The normal vector to the matching surface is

n− =
1

R
∆

1
2 ∂ρ,
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and the associated non-zero components of the second fundamental form on Ω−

are

K−

11 = K−

22
Ω
=

ρR

4
∆

1
2 ,

K−

33
Ω
=

R

4

(

ρ+
a4

ρ3
−
k

3
ρ3

)

∆
1
2 .

The equality of the second fundamental forms gives

∇nB
Ω
= −

∆−
1
2

3ρR

(

2a4

ρ4
−
kρ2

6

)

,

Ae−δ ṫ
Ω
= e2B

(

1 −
a4

3ρ4
−

2kρ2

9

)

. (37)

We can calculate A as before, to find

A
Ω
= e4B

(

(

1 −
a4

3ρ4
−

2kρ2

9

)2

+
kρ2

3
∆

)

−
κµ0ρ

4e−4B

6r2
, (38)

and as before check that this is consistent with Ȧ calculated from (24) and (25).
It is not so clear that we may choose data close to Schwarzschild data in this

case. We can take B
Ω
= 0, but then the normal derivative is

∇nB
Ω
=
kρ

6R
,

so that, for this to be small, we would require R to be large on Ω outside the
marginally trapped surface. It is hard to see how to arrange this and so, although
the solution in the exterior exists locally, we don’t have a good reason to think
that it will settle down to Schwarzschild.

3.2.3. k-Taub-NUT. We take the Riemannian Taub-NUT metric with a cosmo-
logical constant (k rather than Λ with our conventions) [6, 1]

hTN =
1

4
Σ−1dρ2 +

1

4
(ρ2 − L2)(σ2

1 + σ2
2) + L2Σσ2

3 , (39)

where

Σ =
(ρ− L)(1 − k

12 (ρ− L)(ρ+ 3L))

ρ+ L
,

and use it to construct the interior:

ds2− = −dτ2 +R2(τ)hTN .

The Einstein equations for a dust source are again (35). At the matching surface
ρ = ρ0 the first fundamental form is
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ds2−|Ω− = −dτ2 +R2(τ)

(

1

4
(ρ2 − L2)(σ2

1 + σ2
2) + L2Σσ2

3

)

.

From matching the first fundamental forms we get

r
Ω
= R(ρ2 − L2)

1
2 e−B,

e−6B Ω
=

4L2Σ

ρ2 − L2
. (40)

The normal vector to Ω− is taken to be

n− =
2

R
Σ

1
2 ∂ρ,

and the non-zero components of the second fundamental form in this case are

K−

11 = K−

22
Ω
=

1

2
RΣ

1
2 ρ,

K−

33
Ω
= RL2Σ

1
2

(

2ΣL

ρ2 − L2
−
k(ρ− L)

6

)

. (41)

The second matching conditions read

Ae−δ ṫ
Ω
=

4R

3r
Σ

1
2 e4B

(

2L2(2ρ+ L)Σ

ρ2 − L2
−
k

6
L2(ρ− L)

)

,

∇nB
Ω
=

4R

3r2
Σ

1
2 e4B

(

2L2Σ

ρ+ L
+
k

6
L2(ρ− L)

)

(42)

Ω
=

1

3R

(

2Σ1/2

ρ+ L
+
k(ρ− L)

6Σ1/2

)

. (43)

We calculate A on Ω as before and obtain an expression of the form

A = c1(ρ) +
c2(ρ)

r2

and, as before, we can check that this is consistent with Ȧ calculated from (24)
and (25).

Now note that if kL2 = −3 then the metric (39) is precisely the 4-dimensional
hyperbolic metric. In this case, B and ∇nB vanish on Ω whatever the value of ρ0,
so that the exterior metric is precisely Schwarzschild: this is a case from section 2
as the interior is now a standard FLRW cosmology. Consequently, if we take kL2

close to −3 we expect to get data close to Schwarzschild data. To see that this is
the case, set

kL2 = −3(1 + ǫ).

Then
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Σ =
(ρ2 − L2)

4L2
(1 +O(ǫ)) ,

so that

e−6B Ω
= 1 +O(ǫ),

and

∇nB
Ω
=

1

LR
O(ǫ).

Now, clearly the data (B,∇nB) can be chosen as small as desired by choosing
large ρ0 and small ǫ.

Acknowledgments. We thank CRUP/British Council for Treaty of Windsor grant
B-29/08. FM was supported by CMAT, University of Minho. JN was supported
by FCT (Portugal) through program POCI 2010/FEDER and grant POCI/MAT/
58549/2004. FM and JN thank the EPSRC and the Oxford Centre for Nonlinear
PDE (EP/E035027/1), where this work was initiated, for hospitality. FM and PT
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