The initial value problem for a system of high order nonlinear Schrödinger equations

Márcia Scialom
IMECC, Universidade Estadual de Campinas
Campinas, São Paulo, Brasil

Abstract: We investigate some well-posedness issues for the initial value problem (IVP) associated to the system

$$
\left\{\begin{array}{l}
2 i \partial_{t} u+q \partial_{x}^{2} u+i \gamma \partial_{x}^{3} u+2 i \beta\left(|u|^{2}+\sigma_{\beta}|w|^{2}\right) \partial_{x} u+2 \alpha u\left(|u|^{2}+\sigma_{\alpha}|w|^{2}\right) \\
+2 i \mu u \partial_{x}\left(|u|^{2}+\sigma_{\mu}|w|^{2}\right)=0 \\
2 i \partial_{t} w+q \partial_{x}^{2} w+i \gamma \partial_{x}^{3} w+2 i \beta\left(|w|^{2}+\sigma_{\beta}|u|^{2}\right) \partial_{x} w+2 \alpha w\left(|w|^{2}+\sigma_{\alpha}|u|^{2}\right) \\
+2 i \mu w \partial_{x}\left(|w|^{2}+\sigma_{\mu}|u|^{2}\right)=0
\end{array}\right.
$$

This system describes the dynamic of two nonlinear short-optical pulses envelope $u(x, t)$ and $w(x, t)$ in fibers. It was derived by Porsezian, Shanmugha Sundaram e Mahalingam in 1994, and generalizes the model derived by Hasegawa-Kodama in 1985. In this work we study local well-posedness results for the IVP with data in Sobolev spaces $H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R}), s \geq 1 / 4$ and in the periodic case in $H^{s}(\mathbb{T}) \times H^{s}(\mathbb{T})$, $s \geq 1 / 2$. We show global well-posedness results for the system with data in Sobolev spaces $H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R}), 3 / 5<s \leq 1$ and $H^{1}(\mathbb{T}) \times H^{1}(\mathbb{T})$ in the particular case $\sigma_{\alpha}=\sigma_{\beta}=\sigma_{\mu}=1$. We also obtained ill-posedness result for the IVP with data in Sobolev spaces $H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R}),-1 / 2<$ $s<1 / 4$. To prove this last result, we apply the splitting argument introduced by Kenig, Ponce, Vega and Bourgain .

